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LETTER TO THE EDITOR 

Flexural elasticity of percolation lattices 
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Provence, Centre St-JCrome, 13397 Marseille CBdex 13, and Laboratoire de Physique de 
la Matibre HCttrogbne, Ecole SupCrieure de Physique et Chimie Industrielles, 10 rue 
Vauquelin, 75231 Paris CCdex 05 

Received 19 May 1989 

Abstract. Using a two-dimensional beam lattice, we study the critical behaviour of the 
flexural elastic modulus around the percolation threshold, both experimentally and theor- 
etically. We show that this case can be related to an anisotropic electrical conductivity 
percolation problem. This provides proof that the flexural elastic modulus in the vicinity of 
the percolation threshold scales with a critical exponent smaller than (or equal to) the usual 
conductivity exponent, which should be contrasted with in-plane deformation where the 
critical exponent is known to be much larger. The experimental data is consistent with this 
result. 

The mechanical behaviour of randomly depleted media has recently been the subject of 
considerable interest since it has be'en recognised that the elastic transport properties 
were markedly different from other scalar transport properties (e.g. electrical or thermal 
conductivity) [l] (for a brief review see [2]). More precisely, in the framework of 
percolation, we know that the conductivity, G, of a lattice goes to zero when the 
proportion of bonds present tends to a threshold valuep,, as 

whereas the elastic modulus, E ,  approaches zero as 

Specifically, for the two-dimensional case, t and t have been estimated to be t = 
1.300 * 0.005 [3] and t = 3.96 k 0.04 [4] thanks to complicated numerical simulations. 
Experimental data obtained so far (see e.g. [ 5 ] )  are consistent with these values. 
However, one should note that for the two-dimensional case , the above-mentioned 
results concern the case of in-plane deformation. 

We report here a study of out-of-plane deformation, namely the case of the flexion 
of a grid randomly degraded, around the percolation threshold. We will show that, in 
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Figure 1. The contribution of forces and torques 
to the bendingofalatticeout oftheplanewith the 
corresponding orientations of the axes used in the 
text. 

contrast to in-plane deformation, the flexural elastic modulus, F, vanishes at threshold 
according to a power-law 

F = (p - pJTf (3) 

where tf is a critical exponent which will be shown to be smaller than t, the conductivity 
critical index: 

tf d t. (4) 

We model our grid by a lattice of beams. Such a model has already been considered 
in the case of percolation [6,7]. It allows one to introduce the bending contribution 
inisde a bond as a particular two-body interaction and to avoid introducing other kinds 
of bonds (like angular springs whose status is ill-defined in the degradation process). 
Moreover as part of the basic concepts of the strength of materials (a detailed discussion 
of the analogy of different bond-bending situations can be found in [7]), the elastic 
behaviour of a beam has been widely tested and used. 

The most general form of the elastic energy, E, of a beam (one bond of the lattice) 
can be written as [8]: 

(5 )  
F; F$ M i  M ;  M :  

E = i  - + - + + + + + + + + d x  -I-:: GS GS GI, El2 E13 

where x is an abscissa along the axis of the beam, 1 , 2  and 3 are three axis, 1 along the 
axis of the beam, 2 perpendicular to it and in the plane of the lattice, and 3 normal to the 
plane (figure 1). Fi(x) is the ith component of the force, and Mi(x) is the ith component 
of the moment. E and G are respectively the Young and shear moduli of the material. 
Finally S and Ii are geometrical factors (area and geometrical inertia of a transverse 
section). One should also note that, if no external force is applied to the beam apart 
from at its ends, then equilibrium requires that F(x) is constant (independent of x )  but 
M ( x )  is affine with x :  

F2 = dM3/dx (64 

F3 = -dM2/d~ .  (66) 
We see that the elastic behaviour is naturally decoupled between in-plane defor- 

mations (which involve F1, F2, and M,)  and out-of-plane ones (which depend on F3, M I ,  
and M 2 )  (see figure 1). We will now only deal with the second case and therefore we set 
F, = F2 = M 3  = 0 from now on. Another important feature is that, for a loopless 
structure, it is possible to propagate only a flexural moment if this moment is in the plane 
of the lattice. In the lattice, the forces F will be identically zero and thus the moments 
will be constant along the bonds. The experiment discussed previously would be one 
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example of such a case if it did not contain loops, since pure torques are applied onto 
opposite sides of the grid. 

We can however use this property in order to obtain a bound on the critical exponent 
characterising the vanishing of the flexural modulus. If we impose the condition that the 
forces are identically zero inside the lattice, (F3 = 0 along all bonds), then we can 
construct an admissible field of stress in the lattice that balances the applied torque, in 
such a way that only local torques exist. (Admissible means that local equilibrium is 
fulfilled at each node.) We can also use the symmetry of the square lattice for simplicity 
of the argument. If the applied torques at the edges of the grid are along one axis of the 
square lattice (say direction A) then the only stress that any bond inside the grid will 
carry will be a moment oriented along the same direction A, under the hypothesis that 
F3 = 0. So, if the bond is along A, it will be submitted to a torsion, whereas if it is 
perpendicular to A, it will be subject to a flexion out of plane. Therefore a single scalar 
will now characterise the state of stress of each bond. The problem is considerably 
simpler than it seemed to be when considering the full energy expression. 

We now want to minimise the energy on all admissible fields of stress that satisfy our 
restriction. We end with the following simple problem: each bond will carry a moment 
along direction A. We have to minimise the total energy4.e .  the sum of the square of 
the moments carried by each bond times the local elastic modulus, l/GZ1 if it is oriented 
alongA or l/EZ3 if it is perpendicular-under the constraints of fulfilling the equilibrium 
of each node and respecting the boundary conditions. The equilibrium of a node reduces 
here to the zero sum of moments carried by neighbouring bonds. The boundary condition 
expresses the fact that the imposed torque is balanced by the sum of moments of bonds 
reaching the side concerned. This problem is thus formally identical to an anisotropic 
conductivity problem, where the ratio of the conductivities along the two axis of the 
lattice is GZ1/EZ3. We can thus use the following correspondence: current = moment; 
voltage = angle of rotation; dissipative energy = potential energy; conductivity = elastic 
modulus; equilibrium = conservation of current. 

We therefore encounter a problem of the conductivity of an anisotropic lattice at the 
percolation threshold. It has been demonstrated [9 ]  that the system loses its anisotropy 
around the percolation threshold and thus scales with the usual conductivity index t. 
Thus, we can bound the real elastic energy of the lattice by that computed by our 
admissible state of stress: 

where M ,  is the applied torque, and K is a flexural elastic modulus obtain through our 
correspondance. Thus K is also a conductivity which scales as 

K ( P  - P d ' .  
We can conclude that the exponent governing the singularity of the flexural elastic 
modulus at threshold is 

tf 6 t = 1.30 k 0.01. (9) 
Let us note that this result is not restricted to the case of the square lattice; however, we 
have used this case for simplicity of the argument. This inequality is consistent with the 
experimental data presented below. 

A similar correspondence has already been used [ 101 for in-plane deformation to 
demonstrate that the combination t + 2 v ,  where v is the correlation length exponent, is 
an upper bound for t, although it seems to be very close to the most precise numerical 
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Figure 2. (a) Schematic representation of the 
experimental set-up. (b) Detailsof the application 
of forceson tnegrid. Key: AI, AZ, axesof rotation; 
a, a, horizontal knives applying bending 
moments; DI, disc; a, angleof rotation of thedisc. 

estimate. From our result (equation (9)), we can conclude that the in-plane and the out- 
of-plane modes of deformations scale very differently. A hint of this has already been 
given in [ l l ] .  

This somewhat surprising result might have very curious consequences. For example, 
forp close to 1 (i.e. very few missing bonds) the in-plane elastic modulus is much larger 
than for out-of-plane. However, as the critical indices for both problems are very 
different close enough to the threshold the in-plane stiffness should be the weaker. It 
implies that for most experimental conditions the crossing of these moduli should occur 
very close topc. The vibrational eigenfrequencies and eigenmodes of the system should 
suffer from this proximity: if one can expect to distinguish easily between in- and out- 
of-plane deformation far from the threshold, this will no longer be true at the crossing 
point where most modes will be a mixture of both kinds of deformation (see e.g. [ l l ] ) .  
Buckling instabilities should also be strongly affected by this difference in scaling. 

The lattice used in the experiments is a square gird, made of steel. The bonds are 
1 mm thick and 2 mm wide. The lattice mesh is 9 mm. The area of the lattice is 66 x 66. 
A fraction 1 - p of bonds is cut at random. The values of p corresponding to the 
experimental measurements were 0.625,0.6,0.575,0.55 and 0.525. For each of these 
values, both the conductivity G and the elastic modulus E are measured. 
G is obtained using a four-probe method with a constant current of 1 A, and a DC 

voltmeter (resolution 1 pV). The resistance of the grid varies from 1.78 mS2 to 15.8 mS2 
whenp goes from 0.625 to 0.525. The resistance of the intact lattice is 0.38 mS2. 

The elastic modulus is measured in the following way. The grid is hanging from 
two wires linked to its upper end. In its vertical position, it is hanging freely close to two 
horizontal square bars, as shown in figure 2(a). The bending moments are applied to the 
grid by two horizontal knives (cl a n d a )  whose lengths are equal to that of the grid. These 
knives are always perpendicular to the plane of the lattice since they are constrained to 
rotate around two axes, of centre AI and ~2 (see figure 2(6)), because they are attached 
rigidly to two discs DI and ~2 onto which a tangential force is imposed. In this way, well 
controlled bending moments are imposed on the grid. We measure the angle of rotation 
(Y of one disc, ~ 1 ,  from the variation of the electrical resistance of a potentiometer, the 
axis of which is linked to the axis AI. 

Before giving the experimental results, it seems useful to make some comments on 
the difficulties encountered during the mechanical measurements: the process of cutting 
the bonds, usingnippersor a milling machine, progressively producessome deformations 
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of the grid. These unavoidable deformations are both in plane and out of plane. The 
initially plane grid progressively acquired some bending. These deformations were such 
that a first series of data obtained on a sample could not be used. During the experiment, 
an unknown part of the applied torque was used to balance the overall bending of the 
grid, and to bring the sample back into contact with the knives CI and c2, and the vertices 
AI and ~2 of the horizontal bar shown in figure 2(a). Therefore, the values of the elastic 
flexural modulus were erroneous. 

In a second sample, we prevented the previous overall bending by screwing the part 
of the grid in contact with the knives onto a thick (10") metal bar. Due to our 
experimental procedure, we needed to 'reshape' the lattice in such a way that the 
geometry of the remaining bonds was identical with that of the initial (undamaged) 
lattice. Thus, a more or less important work-hardening took place, resulting in some 
experimental errors in the determination of the elastic modulus. The importance of 
these errors however decreases as one gets closer to the percolation threshold. For that 
reason, we restricted ourselves to measurements in the range of p-values between 0.625 
and 0.525 only. 

When the applied torque is increased progressively from zero, the rotation angle first 
increases linearly, before curving down. For low torques, the slope of this curve is well 
defined. It is the inverse of the elastic bending modulus. This quantity, normalised to its 
value at p = 0.625, is plotted as a function of the electrical conductivity in figure 3. 

From the data it is impossible to extract any estimate for tf. However, we note that 
the conductivity decreases faster than the flexural modulus as one gets closer top,, which 
is consistent with the bound (equation (9)) obtained above. 

In conclusion, we have shown theoretically that the flexural elasticity of a percolation 
two-dimensional lattice has a critical exponent smaller or equal to that of conductivity, 
contrary to the in-plane deformation elasticity. This prediction is supported by exper- 
imental measurements. 
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